人工肌肉智能材料研究取得新突破 人工智能最新研究成果具体内容详情!

大家好,小编来为大家解答人工肌肉智能材料研究取得新突破的知识,关于人工智能最新研究成果的介绍很多人还不知道,现在让我们一起来看看吧!

本文目录一览:

人工智能、手术机器人……新技术在改变骨科学

近些年,互联网、大数据、人工智能等前沿技术逐渐渗入到骨科医学的方方面面,推动了新时代新骨科的诞生与演变,同样也赋予传统骨科新的理念、新的内涵、新的范围、新的诊疗手段与康复模式。这些无论对于骨科医生还是骨科患者,都会带来深远影响。

常见的骨科疾病变了

骨科学是专门研究骨骼肌肉系统,并治疗这一系统伤病的学科。随着时代、 社会 的变更和新技术的不断涌现,骨科系统的伤病谱有了明显变化。

骨关节结核、骨髓炎、小儿麻痹等疾病明显减少,而交通事故引起的创伤明显增多;随着 社会 老年人口比例增加,老年性骨质疏松引起的骨折、关节病逐年增多;受环境因素的影响,骨肿瘤、类风湿性关节炎相应增多等。

与此同时,近几十年来骨科的诊疗技术也发生了重要变化,微创技术、新材料应用、再生技术、导航技术、机器人技术等有力促进了学科的快速发展。

新交叉学科:数字骨科

计算机科学与骨科学相结合形成了新兴交叉学科——数字骨科,它涉及人体解剖学、立体几何学、生物力学、材料学、信息学、电子学及机械工程学等领域的知识。具体包括:骨科有限元分析、骨科数字解剖(三维重建)、骨科虚拟仿真手术、骨科快速成型技术、骨科逆向工程技术、计算机辅助设计与制造(CAD/CAM)技术、术前规划、计算机辅助骨科导航手术、骨科远程手术及骨科机器人手术等。

这些新技术已逐步在骨科各亚专科得到了广泛的应用。新理论与新技术催生了临床专业划分的变革,使之更合理、更有效率。

事实上,一部分比较成熟的人工智能及其相关技术(包括智能化的计算机软件和机械电子设备)已经开始进入或 探索 进入临床应用,如计算机辅助检测、辅助诊断系统、穿戴设备和遥感遥测系统、生物信息学技术等。

另外,一大批基于计算机或IT技术的现代医学新技术也不断进入临床使用,如基因诊断与基因操作技术、生物医学工程技术、新药合成技术(包括药物分子的设计与制造)、3D打印技术、AR/VR/MR技术等。

从医学发展史的角度看, 科技 进步和新型工具的使用往往会引发技术进步甚至技术革命,形成新的学科甚至新的业态,由此推动生产力的发展。在全球骨科疾病发病率逐步提高的大背景下,精准治疗是骨科手术未来方向。

人工智能:为骨科注入生命力

人工智能具有和人堪比的学习、创新能力,通过神经网络系统、软件算法等实现推理和决策能力,可应用于很多临床情景中。

医学影像资料的检查与骨科疾病的诊断关系比较密切,临床医生要解读大量病人的CT、磁共振成像(MRI)以及X线等光学影像,极大地考验人类的智力和体力。如今阅片机器人的阅片结果已达到专业技术水准,且阅片速度比人类快。人工智能可以应用图像识别技术以及海量经验数据技术,通过学习经验知识来辅助骨科医生进行辅助处理,提高骨科医生的工作效率,并且可以减少某些疾病的误诊和漏诊。

像人工智能的学习能力辅助骨科医生一样,人工智能的学习能力也可辅助骨科护理人员。将护理知识、护理案例以及护理经验集中汇总到人工智能系统中,就能建立骨科病人护理大数据。当病房收治新病人,输入新病人的病例特征后,人工智能就可以快速地为护理人员推荐出最佳的护理方案。

另外,新时代的护理模式需要逐渐实现精准护理,这给医护人员带来了更大的工作压力。将机器人应用到医院环境下,可以有效协助护理人员进行部分工作,使医护人员从繁重单一的工作中解放出来,以便更好地服务病人。比如,饮食护理机器人、物品传送机器人、病人搬运机器人等将越来越多地被应用到临床工作中。

骨科机器人:手术室里好帮手

目前,骨科机器人已经广泛应用在脊柱外科、膝关节置换、髋关节置换等手术中。国内多家大学、多位学者、多家公司为此均进行了一系列智慧骨科产业化 探索 ,国产骨科手术机器人在高难度骨科手术自动导航技术上成功实现了跟跑、并跑,正逐步迈向领跑。

综上所述,新技术革命为传统学科带来了新的冲击、新的革命,必然蝶变、再造新的学科链;新技术革命在新时代必然重塑、诠释新的骨科学,以适应新技术革命浪潮,推动学科始终处于 科技 发展的最前沿。

为助力卫生 健康 行业高质量发展,“医视野”栏目将聚焦医学各领域的先进理念和优秀实践,打造高端医者智库,撷取创新亮点,凝练发展思路,提升治理能力。

策划:方彤

作者: 南方 科技 大学第三附属医院院长 裴国献

人工智能的发展前景如何?

人工智能行业主要上市公司:目前国内人工智能行业的上市公司主要有百度百度(BAIDU)、腾讯(TCTZF)、阿里巴巴(BABA)、科大讯飞(002230)等。

本文核心数据: 全球人工智能行业市场规模情况,欧洲人工智能市场投资情况,美国人工智能市场投资情况,欧洲人工智能市场投资情况,日本人工智能市场投资情况,全球人工智能行业整体发展趋势

1、 人工智能行业规模巨大

当今,全球科技界最炙手可热的名词莫过于“人工智能”,全球科技巨头诸如谷歌、微软、苹果、IBM、Facebook、英特尔等都将人工智能视为下一个技术引爆点,纷纷砸入巨额投资展开研发与竞争。谷歌把人工智能作为未来重大战略,全力开发“谷歌大脑”;Facebook斥巨资成立人工智能实验室;微软推出旨在探索人类大脑奥秘的人工智能系统“Adam”(亚当),直接与“谷歌大脑”抗衡。

近年来,深度学习+大数据+并行计算共同推动人工智能技术实现跨越式发展。“人工智能+”应用已开始落地开花,从智能安防,到智能客服,再到智慧教育和智慧医疗等。基于人工智能技术的各种产品在各个领域代替人类从事简单重复的体力或脑力劳动,大大提升了生产效率和生活质量,也促进了各个行业的发展和变革。

得益于深度学习等AI技术的进步,以及Al在各个行业的深入应用,产业发展迅速。根据沙利文的统计预测,2019年全球人工智能行业的市场规模约为1917亿美元,初步估计2020年全球人工智能规模将达到2335亿元。

2、欧美国家投资规模波动上涨,日本相较欧美差距较大

欧洲人工智能处于领先地位,近年来,欧洲为推动人工智能的发展,欧盟制定了覆盖整个欧盟的人工智能推进政策、研究和投资计划,协同推进战略实施,确保在人工智能领域的全球竞争力。从2014-2020年的投资数量和投资金额来看,欧洲人工智能行业的投资规模呈上升的趋势,但近几年行业投资热度有所下降,相对而言保持稳定。2020年,欧洲人工智能相关投资事件为40起,投资金额达到39.72亿元。

美国在脑科学、量子计算、通用AI等方面超前布局,同时,充分依托硅谷强大优势,由企业主导建立了完整的人工智能产业链和生态圈,在人工智能芯片、开源框架平台、操作系统等基础软硬件领域全球领先。

从2014-2020年的投资数量和投资金额来看,美国人工智能行业的投资规模不断扩大。虽然2019-2020年投资事件有所减少,但投资金额却不断增加,单笔平均投资金额持续上升。2020年,美国人工智能相关投资事件为101起,投资金额达到429.23亿元。

日本的人工智能研究,首先是从大学校园里开始的。有日本机器人之父之称的早稻田大学教授加藤一郎,早在1970年代就开始研发人工肌肉驱动之下的下肢机器人。1990年代又研发出以液压和电机驱动的下肢机器人。而大阪大学智能机器人学教授石黑浩带领的研究小组,在2010年就开发出了可以模仿人类表情的女性替身机器人。在战略上,日本政府将人工智能定位为增长战略的支柱。

日本人工智能市场的投资规模远不如美国、欧洲和中国等国家和地区,其中日本人工智能企业数量较少也是其中影响因素。

3、全球人工智能将呈现螺旋式发展

未来全球的人工智能将呈现螺旋式发展,同时在人工智能应用快速普及的情况下,场景将呈现出快速整张的趋势。细分赛道中,机器学习、图像识别、智能机器人最具有发展潜力。

以上数据参考前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》。

外骨骼机器人研制的最大瓶颈是什么?

两个问题,一个是动力,然后它还需要小但是功能强大的传动装置,一套灵敏但是又不能太灵敏的动作控制系统。以《阿凡达》为例子,外骨骼必须成为士兵的机械影子,必须能及时地模仿他的每个动作,即使是毫秒的迟疑也会造成负担,让士兵感觉像行走在水中一样费力。因此它的感应器必须能够以每秒几千次的速度读懂施加在它全身的每个轻微动作,它的微处理器必须足够强大,能把这些数据及时转换成指令传送给机械四肢,使它们与内部穿着者的行动协调一致,并且这过程中操作者的各种没必要的小动作以及动作过程中的不配合情况,还要由电脑“翻译”后以最有效的动作平滑地反应到机体上;而传动装置,传统的液压实在是过于的迟缓,而且会增加重量,占用空间,因此首选的就是类似人工肌肉这样的材料;最后是动力,动力不一定是蓄电池,但是肯定不是柴油机,即便是像AS那种大型机器人用的也是性能更优秀的燃气涡轮引擎搭配高电容的电池组,而对于《阿凡达》里的那些机器人,柴油机体积太大了,而且对于后勤的要求也不见得少多少,至少蓄电池你还可以用太阳能,柴油你怎么办?

未来科学家是如何利用智能材料的三十字?

智能材料的构想来源于仿生(仿生就是模仿大自然中生物的一些独特功能制造人类使用的工具,如模仿蜻蜓制造飞机等等),它的目标就是想研制出一种材料,使它成为具有类似于生物的各种功能的“活”的材料。

因此智能材料必须具备感知、驱动和控制这三个基本要素。但是现有的材料一般比较单一,难以满足智能材料的要求,所以智能材料一般由两种或两种以上的材料复合构成一个智能材料系统。

这就使得智能材料的设计、制造、加工和性能结构特征均涉及到了材料学的最前沿领域,使智能材料代表了材料科学的最活跃方面和最先进的发展方向。

扩展资料:

一般来说智能材料由基体材料、敏感材料、驱动材料和信息处理器四部分构成。

(1)基体材料

基体材料担负着承载的作用,一般宜选用轻质材料。一般基体材料首选高分子材料,因为其重量轻、耐腐蚀,尤其具有粘弹性的非线性特征。其次也可选用金属材料,以轻质有色合金为主。

(2)敏感材料

敏感材料担负着传感的任务,其主要作用是感知环境变化(包括压力、应力、温度、电磁场、PH值等)。常用敏感材料如形状记忆材料、压电材料、光纤材料、磁致伸缩材料、电致变色材料、电流变体、磁流变体和液晶材料等。

(3)驱动材料

因为在一定条件下驱动材料可产生较大的应变和应力,所以它担负着响应和控制的任务。常用有效驱动材料如形状记忆材料、压电材料、电流变体和磁致伸缩材料等。可以看出,这些材料既是驱动材料又是敏感材料,显然起到了身兼二职的作用,这也是智能材料设计时可采用的一种思路。

(4)其它功能材料

包括导电材料、磁性材料、光纤和半导体材料等。

以上便是金财小编为大家整理的人工肌肉智能材料研究取得新突破方面知识,希望对你有帮助哦!

本文由小萌宠于2022-10-15发表在晨夕宠物网,如有疑问,请联系我们。

本文链接:https://www.chenxi521.com/redian/122342.html

发表评论

评论列表

还没有评论,快来说点什么吧~